Bi-Hamiltonian geometry and canonical spectral coordinates for the rational Calogero–Moser system

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Proof of Sklyanin’s Formula for Canonical Spectral Coordinates of the Rational Calogero–Moser System

We use Hamiltonian reduction to simplify Falqui and Mencattini’s recent proof of Sklyanin’s expression providing spectral Darboux coordinates of the rational Calogero– Moser system. This viewpoint enables us to verify a conjecture of Falqui and Mencattini, and to obtain Sklyanin’s formula as a corollary.

متن کامل

Invariant-geometry conditions for the rational bi-quadratic Bézier surfaces

A generalization of Patterson’s work (Patterson, 1985), on the invariants of the rational Bézier curves, to the case of surfaces is presented. An equation for the determination of the invariants for surfaces of degree (n, n) is derived and solved for the bi-quadratics – for which it is shown that seven independent, invariant functions exist. Explicit forms of the invariants are derived and a nu...

متن کامل

Tri–hamiltonian vector fields, spectral curves and separation coordinates

We show that for a class of dynamical systems, Hamiltonian with respect to three distinct Poisson brackets (P0, P1, P2), separation coordinates are provided by the common roots of a set of bivariate polynomials. These polynomials, which generalise those considered by E. Sklyanin in his algebro–geometric approach, are obtained from the knowledge of: (i) a common Casimir function for the two Pois...

متن کامل

Bi–Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables

We discuss from a bi-Hamiltonian point of view the Hamilton–Jacobi separability of a few dynamical systems. They are shown to admit, in their natural phase space, a quasi–bi– Hamiltonian formulation of Pfaffian type. This property allows us to straightforwardly recover a set of separation variables for the corresponding Hamilton–Jacobi equation.

متن کامل

Comments on "Canonical coordinates and the geometry of inference, rate, and capacity"

Canonical correlations measure cosines of principal angles between random vectors. These cosines multiplicatively decompose concentration ellipses for second-order filtering and additively decompose information rate for the Gaussian channel. Moreover, they establish a geometrical connection between error covariance, error rate, information rate, and principal angles. There is a limit to how sma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2017

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2016.04.023